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Abstract
Functional determinants of differential operators play a prominent role in
theoretical and mathematical physics, and in particular in quantum field
theory. They are, however, difficult to compute in non-trivial cases. For one-
dimensional problems, a classical result of Gel’fand and Yaglom dramatically
simplifies the problem so that the functional determinant can be computed
without computing the spectrum of eigenvalues. Here I report recent progress
in extending this approach to higher dimensions (i.e., functional determinants
of partial differential operators), with applications in quantum field theory.

PACS numbers: 11.15.Kc, 03.65.Db, 11.10.−z, 11.15.−q

1. Introduction : why are determinants important in QFT?

This paper considers the question what is the determinant of a partial differential operator,
and how might one compute it?

The physical motivation for this question comes from several areas of physics:

• Effective actions, grand canonical potentials. These appear in relativistic and non-
relativistic many-body theory and quantum field theory (QFT), and are generically given
by an expression of the form � = tr ln G = ln det G, where G is a Green’s function, and
the trace is over an infinite set of quantum states.

• Tunneling and semiclassical physics. Tunneling and nucleation processes can be analyzed
in a semiclassical approach, wherein the leading exponential contribution involves
the action evaluated on a classical solution, while the next-to-leading prefactor is the
determinant of the fluctuation operator describing quantum fluctuations about the classical
solution: ∫

Dφ e−S[φ] ≈ e−S[φcl]√
det(fluctuation operator)

. (1)
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• Gap equations. In many-body theory and relativistic QFT, one can find ground states by
solving self-consistent Hartree–Fock or Schwinger–Dyson equations, varying the grand
canonical potential or effective action with respect to a condensate field. Symbolically,
the problem is of the form

σ(x) = δ

δσ (x)
ln det[D + σ(x)] (2)

where D is some differential operator. Clearly, to be able to vary the determinant
efficiently, one needs a clever way to evaluate the determinant.

• Lattice gauge theory. Integrating out quarks leads to fermion determinant factors∫
DψD ψ̄ e− ∫ d4xψ̄[D/ −m]ψ = det(D/ − m) (3)

which are needed for dynamical fermion computations in QCD. There are still fundamental
challenges in evaluating such determinants within the Monte Carlo approach to lattice
gauge theory, especially at finite density and temperature.

• Faddeev–Popov determinants. The determinant of the Faddeev–Popov operator plays an
important role in gauge fixing and confinement.

• Mathematical physics. The determinant of a partial differential operator, such as a Dirac
or Klein–Gordon operator, encodes interesting spectral information.

2. What we know

Exact results for functional determinants exist only for certain special cases. For example,
the gauge theory effective action (the logarithm of the determinant of a Dirac or Klein–
Gordon operator) for background fields with (covariantly) constant field strength can be
expressed as simple proper-time integrals, building on the seminal work of Heisenberg and
Euler [1–3]. Mathematically, these expressions are closely related to the multiple zeta and
gamma functions [4]. This constant curvature case is soluble because we can choose a Fock–
Schwinger gauge with Aµ = − 1

2Fµνxν , in which case the spectral problem decomposes into
a set of harmonic oscillator problems, for which the spectral information is very simple.
Similarly, in gravitational problems, for special spaces such as harmonic spaces or symmetric
spaces, the spectral problem is sufficiently separable and simple that the determinant can be
evaluated [5]. For example, the determinant of Dirac or Klein–Gordon operators on spheres,
cones and tori are known in quite explicit form [5, 6]. Remarkably, this type of analysis can
also be extended to general Riemann surfaces [7, 8], with important applications to worldsheet
problems in string theory and with beautiful applications in number theory and differential
geometry.

Things become more interesting when including general non-constant curvatures (either
gauge or gravitational). Then there are a few especially symmetric cases that are still soluble,
but they are all one-dimensional. For example, in gauge theory, if the field strength points
in a particular fixed direction, and has a magnitude that is a function of only one coordinate
(say xµ), and is of the form F sech2(kxµ), then the corresponding (Dirac or Klein–Gordon)
spectral problem is hypergeometric, and the determinant can be computed explicitly. Also,
for massless quarks in an instanton background, the fermion determinant is known. Such a
computation was pioneered by ’t Hooft for the single su(2) instanton [9], but has since been
generalized to instantons of full ADHM form [10], to finite temperature [11], and to calorons
with nontrivial holonomy [12]. These computations all rely on the fact that the Green’s
functions for massless particles in an instanton background are known explicitly. This is an
example of a class of exact results known as anomalous effective actions, which are often
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determined by topological and/or symmetry constraints [16]. The generalization of ’t Hooft’s
instanton case to nonzero fermion masses is nontrivial, and is discussed below in section 8.

Some general bounds are known, based on lattice regularizations and generalizations of
Kato’s inequality for Dirac and Klein–Gordon operators. For example [13, 14],∣∣∣∣det[m2 − D/2]

det[m2 − ∂/2]

∣∣∣∣ � 1;
∣∣∣∣∣det

[
m2 − D2

µ

]
det
[
m2 − ∂2

µ

]
∣∣∣∣∣ � 1. (4)

While very general, these bounds are still quite weak, and do not contain information about
the phase of the determinant, which can be physically significant. Tighter bounds have been
found recently in QED [15], but general results are still relatively limited.

For Schrödinger operators with general potentials, or Dirac/Klein–Gordon operators with
arbitrary gauge and/or gravitational backgrounds, we rely heavily on approximate methods.
One such approximation is the heavy mass expansion. Define

ln det[m2 + D] = tr ln[m2 + D] = −
∫ ∞

0

ds

s
e−m2s tr{e−sD}. (5)

Then an inverse mass expansion follows (after renormalization) from the small s asymptotic
expansion of the heat kernel operator [16] (d is the manifold’s dimension)

tr{e−sD} ∼ 1

(4πs)d/2

∞∑
k=0

skak [D] . (6)

Here the ak [D] are known functionals of the potentials appearing in D. Similarly, a derivative
expansion can be derived by expanding the heat kernel trace tr{e−sD} about the soluble constant
background case, in powers of derivatives of the background. This corresponds to resumming
all non-derivative terms in the inverse mass expansion. While very general, these expansions
are asymptotic, with higher terms becoming rapidly unwieldy, and so have a somewhat limited
range of application.

Another approach is to define the functional determinant via a zeta function

ζ(s) ≡
∑

λ

1

λs
, (7)

where the sum is over the spectrum of the relevant differential operator. Then, by the formal
manipulations ζ ′(0) = −∑λ ln λ = − ln

(∏
λ λ
)
, one defines the determinant as

det = e−ζ ′(0). (8)

The problem becomes one of analytically continuing ζ(s) from the region in which it converges
(typically �(s) > d/2) to the neighborhood of s = 0. For example, in a radially separable
problem, one might estimate the spectrum using WKB phase shifts (and the corresponding
spectral function ρ(k) = 1

π
dδ
dk

), thereby obtaining information about the zeta function. The
zeta function approach is complementary to the so-called replica method, where one defines
the logarithm of an operator by considering positive integer powers n of the operator, and
then analytically continues to n = 0. There are also non-trivial interesting one-dimensional
quantum mechanical problems for which the determinant can be computed from the zeta
function [17].

There are several special features of one-dimensional problems that deserve mention.
First, the issue of renormalization does not really enter in 1D. Second, the theory of inverse
scattering allows us to characterize a potential in terms of the associated scattering data. This is
especially useful for solving variational and gap equations, as the variational problem can then
be reformulated in terms of the scattering data, which is more direct. Beautiful applications
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of this idea occur in interacting (1+1)-dimensional QFT’s such as the Gross–Neveu model,
Sine-Gordon model and their generalizations [18, 19]. (Inverse scattering has been generalized
in higher dimensions for radial problems [20]). A third special feature of 1D problems is the
Gel’fand Yaglom theorem [21, 22], which provides a way to compute the determinant of an
ordinary differential operator without computing its eigenvalues. The basic idea is that in 1D
one can define the Green’s function without using an eigenfunction expansion, simply from
the product of two independent solutions.

3. Gel’fand–Yaglom theorem: ordinary differential operators

The simplest form of this result can be stated as follows [21–26]. Consider a Schrödinger
operator on the interval x ∈ [0, L], with Dirichlet boundary conditions:[

− d2

dx2
+ V (x)

]
ψ(x) = λψ(x); ψ(0) = ψ(L) = 0. (9)

Then to compute the determinant it is in fact not necessary to compute the infinite discrete set
of eigenvalues {λ1, λ2, . . .}. Instead, solve the related initial value problem[

− d2

dx2
+ V (x)

]
φ(x) = 0; φ(0) = 0; φ′(0) = 1. (10)

Then

det

[
− d2

dx2
+ V (x)

]
= φ(L). (11)

It is worth pausing to appreciate the simplicity of this result, as well as its practical utility.
It is straightforward to implement numerically. The determinant follows, without having to
compute any eigenvalues, let alone multiply them all together!

Actually, (11) is not quite right, as we can only define the ratio of two determinants [27],
and (11) should be understood in this sense. Often in physical applications one is computing
the determinant relative to the corresponding determinant for the free operator, for which the
initial value problem is usually known in closed form (in this case it is numerically better to
solve directly the initial value problem for the ratio). As an illustration, consider the following
simple example of the massive Helmholtz operator

[− d2

dx2 + m2
]
. The Dirichlet spectrum is

λn = m2 +
(

nπ
L

)2
, so from the eigenvalues

det
[− d2

dx2 + m2
]

det
[− d2

dx2

] =
∞∏

n=1

[
m2 +

(
nπ
L

)2]
[(

nπ
L

)2] =
∞∏

n=1

[
1 +

(
mL

nπ

)2
]

= sinh(mL)

mL
. (12)

On the other hand, if we use the Gel’fand–Yaglom result, we solve the initial value problems:[− d2

dx2 + m2
]
φ = 0, to find φ(x) = sinh(mx)

m
; and − d2

dx2 φ0 = 0, to find φ0(x) = x for the
massless operator. Then (11) implies

det
[− d2

dx2 + m2
]

det
[− d2

dx2

] = φ(L)

φ0(L)
= sinh(mL)

mL
. (13)

These clearly agree, but the point is that if m2 were replaced by a nontrivial potential V (x), the
first approach, from the eigenvalues, would be extremely difficult, while the Gel’fand–Yaglom
approach is still easy. For an example on the whole real line, consider the Pöschl–Teller system
with H = [− d2

dx2 +m2 −j (j +1) sech2 x
]
, with integer j . This is a reflectionless potential with
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j bound states at E = m2 − l2, (l = 1, . . . , j ), and phase shift δ(k) = 2
∑j

l=1 arctan(l/k).
The determinant follows directly from the spectrum as

ln

(
det
[− d2

dx2 + m2 − j (j + 1) sech2x
]

det
[− d2

dx2 + m2
]

)
=

j∑
l=1

ln(m2 − l2) +
∫ ∞

0

dk

π

dδ

dk
ln(m2 + k2)

= ln
�(m)�(m + 1)

�(m − j)�(m + j + 1)
. (14)

On the other hand, the solutions to the Gel’fand–Yaglom initial value problems (10) are

φ(x) = 1

4m

�
(

j−m+2
2

)
�
(

j−m+1
2

)
�
(

j+m+2
2

)
�
(

j+m+1
2

) (P m
j (−th L)Qm

j (th x) − Qm
j (−th L)P m

j (th x)
)

φ(j=0)(x) = 1

m
(cosh(mL) sinh(mx) + sinh(mL) cosh(mx))

(15)

on the interval x ∈ [−L,L]. The P m
j and Qm

j are Legendre functions. Then

det
[− d2

dx2 + m2 − j (j + 1) sech2x
]

det
[− d2

dx2 + m2
] = lim

L→∞
φ(L)

φ(j=0)(L)
= �(m)�(m + 1)

�(m − j)�(m + j + 1)
. (16)

Similarly, one can define a general reflectionless potential with N bound states at E =
m2 − κ2

i , (i = 1, . . . N), by V (x) = m2 − 2 d2

dx2 ln detA(x), where A(x) is the N × N matrix
Aij = δij + cicj

κi+κj
e−(κi+κj )x . The ci are (constant) moduli which affect the shape of the

potential, but not the spectrum. From the phase shift δ(k) = 2
∑N

i=1 arctan(κi/k), one finds
the determinant

det
[− d2

dx2 + m2 + V (x)
]

det
[− d2

dx2 + m2
] = exp

[
−2

N∑
i=1

arctanh

(
m

κi

)]
. (17)

It is instructive to verify this numerically for various potentials using (10) and (11).
The basic result (11) generalizes in several ways. First, it generalizes to other boundary

conditions [24, 26, 28], characterized by two 2 × 2 matrices M and N as

M

(
ψ(0)

ψ ′(0)

)
+ N

(
ψ(L)

ψ ′(L)

)
= 0. (18)

Construct two independent solutions u(1),(2) of
[− d2

dx2 + V (x)
]
φ(x) = 0 such that

u(1)(0) = 1, u′
(1)(0) = 0

u(2)(0) = 0, u′
(2)(0) = 1.

(19)

Then the infinite dimensional determinant reduces to a simple 2 × 2 determinant

det

[
− d2

dx2
+ V (x)

]
= det2×2

[
M + N

(
u(1)(L) u(2)(L)

u′
(1)(L) u′

(2)(L)

)]
(20)

For example,

Dirichlet: M =
(

1 0
0 0

)
, N =

(
0 0
1 0

)
⇒ det = u(2)(L)

Neumann: M =
(

0 0
0 1

)
, N =

(
0 1
0 0

)
⇒ det = u′

(1)(L)

Periodic (P): M = 1, N = −1 ⇒ det = 2 − (u(1)(L) + u′
(2)(L))

Antiperiodic (AP): M = 1, N = 1 ⇒ det = 2 + (u(1)(L) + u′
(2)(L)).
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In the P/AP cases we recognize (u(1)(L) + u′
(2)(L)) as the Floquet–Bloch discriminant, which

takes values ±2 for P/AP eigenfunctions. Second, these results generalize straightforwardly
to coupled systems of ODE’s [24, 28], and also to linear ODE’s of any order [29]. Third, they
generalize to Sturm–Liouville problems [28]. For example, consider the radial operator in d
dim., with Dirichlet b.c.’s

M(l) ≡ − d2

dr2
+

(
l + d−3

2

) (
l + d−1

2

)
r2

+ V (r). (21)

Define the function φ(l)(r) as the solution to the radial initial value problem

[M(l) + m2]φ(l)(r) = 0; φ(l)(r) ∼ rl+(d−1)/2, as r → 0. (22)

Then (this should also be understood as applying to ratios of determinants)

det[M(l) + m2] = φ(l)(R). (23)

As an explicit example, consider the 2D radial Helmholtz problem, with eigenvalues in terms
of the zeros j(l),n of the Jl Bessel function: λ(l),n = m2 +

( j(l),n

R

)2
. Then

det[M(l) + m2]

det[M(l)]
=

∞∏
n=1

[
m2 +

( j(l),n

R

)2]
[( j(l),n

R

)2] =
∞∏

n=1

[
1 +

(
mR

j(l),n

)2
]

. (24)

On the other hand, if we use the Gel’fand–Yaglom result (23), we readily solve the relevant
initial value problems to find φ(l) in terms of the modified Bessel function Il :

φ(l)(R)

φfree
(l) (R)

= l!Il(mR)(
mR

2

)l . (25)

The agreement between (24) and (25) expresses the product formula for Il(x).

4. Gel’fand–Yaglom theorem: partial differential operators?

In generalizing from ordinary to partial differential operators, it is natural to consider first
the case of separable operators. But the naı̈ve extension fails. Formally, we simply take a
product over the radial determinants (each of which is evaluated as above) for all possible
angular momenta, with the appropriate degeneracies. However, this product diverges [24].
For example, for the 2D radial Helmholtz system (25)

ln

(
det[M(l) + m2]

det[M(l)]

)
= ln

(
l!2lIl(mR)

(mR)l

)
∼ O

(
1

l

)
, l → ∞ (26)

The degeneracy factor is 1 for l = 0, and 2 for all l � 1, so the angular momentum sum over
l diverges. This should not be so surprising from a physical point of view, as we expect to
require renormalization in dimension higher than 1. To formulate the problem more precisely,
consider the radially separable operators M = −� + V (r), and Mfree = −�, where � is
the Laplace operator in R

d , and V (r) is a radial potential vanishing at infinity as r−2−ε for
d = 2 and d = 3, and as r−4−ε for d = 4. Since V = V (r), we can separate variables and
consider the Schrödinger-like radial operator M(l) in (21). For dimension d � 2, the radial
eigenfunctions ψ(l) have degeneracy

deg(l; d) ≡ (2l + d − 2)(l + d − 3)!

l!(d − 2)!
. (27)

Formally, we write

ln

(
det[M + m2]

det[Mfree + m2]

)
=

∞∑
l=0

deg(l; d) ln

(
det[M(l) + m2]

det
[
Mfree

(l) + m2
]
)

. (28)
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Each term in the sum is computed straightforwardly using (23), but the l sum is divergent.
However, this divergence can be understood physically, leading to a finite and (on-shell)
renormalized determinant ratio [30]:

ln

(
det[M + m2]

det[Mfree + m2]

) ∣∣∣∣∣
d=2

= ln

(
φ(0)(∞)

φfree
(0) (∞)

)
+

∞∑
l=1

2

{
ln

(
φ(l)(∞)

φfree
(l) (∞)

)
−
∫∞

0 dr rV (r)

2l

}

+
∫ ∞

0
dr rV

[
ln
(mr

2

)
+ γ
]

ln

(
det[M + m2]

det[Mfree + m2]

) ∣∣∣∣∣
d=3

=
∞∑
l=0

(2l + 1)

{
ln

(
φ(l)(∞)

φfree
(l) (∞)

)
−
∫∞

0 dr rV (r)

2
(
l + 1

2

)
}

ln

(
det[M + m2]

det[Mfree + m2]

) ∣∣∣∣∣
d=4

=
∞∑
l=0

(l + 1)2

{
ln

(
φ(l)(∞)

φfree
(l) (∞)

)
−
∫∞

0 dr rV (r)

2(l + 1)
+

∫∞
0 dr r3V (V + 2m2)

8(l + 1)3

}

− 1

8

∫ ∞

0
dr r3V (V + 2m2)

[
ln
(mr

2

)
+ γ + 1

]
. (29)

Here γ is Euler’s constant. In each of (29), the sum over l is convergent once the indicated
subtractions are made. The function φ(l)(r) is defined in (22).

Note that the results (29) state once again that the determinant is determined by the
boundary values of solutions of [M + m2]φ = 0, with the only additional information being
a finite number of integrals involving the potential V (r). We also stress the computational
simplicity of (29); no phase shifts or eigenvalues need be computed to evaluate the renormalized
determinant.

These results have been derived [30] using the zeta function formalism. Scattering theory
[31] and standard contour manipulations [28, 32] yield an integral representation (valid for
�(s) > d/2) of the zeta function in terms of the Jost function fl(ik):

ζ(s) = sin πs

π

∞∑
l=0

deg(l; d)

∫ ∞

m

dk[k2 − m2]−s ∂

∂k
ln fl(ik). (30)

The technical problem is the analytic continuation of (30) to a neighborhood about s = 0. This
analytic continuation relies on the uniform asymptotic behavior of the Jost function fl(ik),
which follows from standard results in scattering theory [31]:

ln fl(ik) =
∫ ∞

0
dr rV (r)Kν(kr)Iν(kr) −

∫ ∞

0
dr rV (r)K2

ν (kr)

×
∫ r

0
dr ′r ′V (r ′)I 2

ν (kr ′) + O(V 3)

where ν ≡ l + d
2 − 1. Then the calculation of the asymptotics of the Jost function reduces

to the known uniform asymptotics of the modified Bessel functions Kν and Iν . Using
these asymptotics, we can define ln f

asym

l (ik) as the O(V ) and O(V 2) parts of this uniform
asymptotic expansion, and then, by construction,

ζ ′
f (0) ≡ −

∞∑
l=0

deg(l; d)
[
ln fl(im) − ln f

asym

l (im)
]

(31)

is now convergent. Adding back the subtracted terms in a dimensional regularization scheme
leads [30] to the results in (29).



8 G V Dunne

5. Comparison with Feynman diagram approach

These determinants can also be derived in a Feynman diagrammatic approach, where the
perturbative expansion in powers of the potential V is

ln

(
det[M + m2]

det[Mfree + m2]

)
≡

∞∑
k=1

(−1)k+1

k
A(k)

= − 1

2
+

1

3
+ · · · . (32)

Here the solid dots denote insertions of the potential V . If the potential is radial, then with
dimensional regularization one can express the renormalized 4D determinant as [33][

ln

(
det
[
M + m2

]
det
[
Mfree + m2

]
)]

d=4

=
∞∑
l=0

(l + 1)2

{
ln fl(im) −

∫ ∞

0
dr rV (r)Kl+1(mr)Il+1(mr)

+
∫ ∞

0
dr rV (r)K2

l+1(mr)

∫ r

0
dr ′ r ′V (r ′)I 2

l+1(mr ′)
}

+ A
(1)
fin − 1

2
A

(2)
fin (33)

where the finite contributions from the first- and second-order Feynman diagrams in the MS

scheme are [33] (note the small typo in equation (4.32) of [33]):

A
(1)
fin = −m2

8

∫ ∞

0
dr r3V (r)

A
(2)
fin = 1

128π4

∫ ∞

0
dq q3

∣∣Ṽ (q)
∣∣2 [2 −

√
4m2 + q2

q
ln

( √
4m2 + q2 + q√
4m2 + q2 − q

)]
.

(34)

Here Ṽ (q) is the 4D Fourier transform of the radial potential V (r). These expressions (33) and
(34) look quite different from (29), but, in fact, they can be shown to be completely equivalent,
using some Bessel identities [30]. However, it is clear that (29) is much easier to evaluate,
especially if (as often happens) V (r) is known only numerically.

6. Removing zero modes

In certain quantum field theory applications the determinant may have zero modes, and
correspondingly one is actually interested in computing the determinant with these zero
modes removed, together with a collective coordinate factor [23]. For example, consider the
case of a self-interacting scalar field theory in d dim Euclidean space with Euclidean action
S[�] = ∫

ddx[∂µ�∂µ� + U(�)], where there is a (radially symmetric) classical solution
�cl(r) solving �� = dU

d�
, with �′(0) = 0, and � → 0 as r → ∞. The fluctuation operator

about this classical solution is a radial operator, with V (r) = ([
d2U
d�2

]
�=�cl(r)

− m2
)
. In the

l = 1 sector the corresponding radial operator M(l=1) has a d-fold degenerate zero mode
associated with translational invariance:

ψzero(r) = �′
cl(r)

�′′(0)
. (35)

Including the collective coordinate contribution [23] due to translational invariance, the
required determinant factor is (the prime denotes exclusion of zero mode(s))(

S[�cl]

2π

)d/2
(

det′[M(l=1) + m2]

det
[
Mfree

(l=1) + m2
]
)−1/2

. (36)
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Since the determinant is expressed in terms of a solution to an ODE, we can use simple ODE
theory to show that (generalizing the d = 1 [34] and d = 4 [35] analyses)

det′[M(l=1) + m2]

det
[
Mfree

(l=1) + m2
] =

[ ∫∞
0 dr rd−1ψ2

zero(r)

limR→∞
(−2Rd−1ψ ′

zero(R)ψ free
zero(R)

)
]d

. (37)

Here, ψ free
zero(r) = 2d/2�

(
d
2 + 1

)
Id/2(r)/rd/2−1, and the classical solution behaves as �cl(R) ∼

�∞
Kd/2−1(R)

Rd/2−1 , as R → ∞, for some constant �∞. Thus the R → ∞ limit exists and is simple.

Furthermore, from the virial theorem,
∫∞

0 dr rd−1ψ2
zero(r) = �( d

2 +1)S[�cl]

πd/2(�′′
cl(0))

2 , so we arrive at the

simple expression for the net contribution of this l = 1 mode:

(
S[�cl]

2π

)d/2
(

det′[M(l=1) + m2]

det
[
Mfree

(l=1) + m2
]
)−1/2

= [(2π)d/2−1�∞|�′′
cl(0)|]d/2. (38)

This expresses the zero mode factor solely in terms of the asymptotic properties of the classical
solution �cl, which are already known numerically as part of the determination of �cl and the
fluctuation potential V (r). No further computation is needed.

7. Application 1: fluctuation determinant for false vacuum decay

The phenomenon of nucleation drives first-order phase transitions in many applications in
physics. The semiclassical analysis of the rate of such a nucleation process was pioneered
by Langer [36], who identified a semiclassical saddle point solution that gives the dominant
exponential contribution to the rate, with a prefactor to the exponential given by the quantum
fluctuations about this classical solution. The nucleation rate is given by the quantum
mechanical rate of decay of a metastable ‘false’ vacuum, �−, into the ‘true’ vacuum, �+.
Decay proceeds by the nucleation of expanding bubbles of true vacuum within the metastable
false vacuum [36–41]. The semiclassical prefactor requires computing the determinant of the
differential operator associated with quantum fluctuations about the classical solution. This is
a technically difficult problem, but it is ideally suited to the above results for determinants of
radially separable operators, because the fluctuation operator is radial. Expression (42) below
can be applied to any metastable field potential U(�) [35], without relying on the ‘thin-wall’
limit (the limit of degenerate vacua) . For definiteness, consider the specific (rescaled) quartic
potential: U(�) = 1

2�2 − 1
2�3 + α

8 �4, where α characterizes the shape of the potential (the
thin-wall limit is α → 1). The decay rate per unit volume and unit time is

γ =
(

Scl[�cl]

2π

)2 ∣∣∣∣det′(−� +U ′′(�cl))

det(−� +U ′′(�−))

∣∣∣∣
−1/2

e−Scl[�cl]−δct S[�cl], (39)

where the prime on the determinant means that the zero modes (corresponding to translational
invariance) are removed. Here �cl is a classical solution known as the ‘bounce’ solution [39],
defined below, and the prefactor terms in (39) correspond to quantum fluctuations about this
bounce solution. The second term in the exponent, δctS[�cl], denotes the counterterms needed
for renormalizing the classical action Scl. The first step in computing the false vacuum decay
rate γ is to find the classical bounce solution, �cl(r), which is a radially symmetric stationary
point of the classical Euclidean action, interpolating between the false and true vacuum. The
bounce �cl(r) solves the nonlinear ordinary differential equation

−�′′
cl − 3

r
�′

cl + �cl − 3

2
�2

cl +
α

2
�3

cl = 0 (40)
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with boundary conditions �′
cl(0) = 0,�cl(r) → �− ≡ 0, as r → ∞. �cl(r) must be

computed numerically, for example by the method of shooting, adjusting the initial value
�cl(0) until the boundary conditions at r = ∞ are satisfied. Given the bounce solution,
�cl(r), the corresponding radial fluctuation potential is

U ′′(�cl(r)) = 1 − 3�cl(r) +
3α

2
�2

cl(r). (41)

There are three different types of eigenvalue of the fluctuation operator, each having a
different role physically and mathematically. (i) Negative mode: the l = 0 sector has a
negative eigenvalue mode of the fluctuation operator, and is responsible for the instability
leading to decay. This mode contributes a factor to the decay rate γ related to the absolute
value of the determinant of the l = 0 fluctuation operator [36, 39]. (ii) Zero modes: in
the l = 1 sector, there is a four-fold degenerate zero eigenvalue of the fluctuation operator.
Integrating over the corresponding collective coordinates produces the factors of Scl

2π
in (39).

In computing the rate γ , we need the determinant of the fluctuation operator with the zero
mode removed [36, 39, 40]. This can be evaluated simply using the formula (38), in terms
of the asymptotic behavior of the classical bounce solution �cl(r). (iii) Positive modes: for
l � 2, the fluctuation operator has positive eigenvalues, each of degeneracy (l + 1)2. For each
l, the associated radial determinant is computed numerically using (23). But the sum over l
is divergent and the answer must be renormalized. Using the MS scheme, the renormalized
effective action is [35]

�MS = 1

2
ln|T(0)(∞)| − 2 ln

[
π

2
�∞

(
�0 − 3

2
�2

0 +
α

2
�3

0

)]

+
1

2

∞∑
l=2

(l + 1)2

{
ln(T(l)(∞)) −

1
2

∫∞
0 dr rV (r)

(l + 1)
+

1
8

∫∞
0 dr r3V (V + 2)

(l + 1)3

}

− 3

4

∫ ∞

0
dr rV (r) +

1

16

∫ ∞

0
dr r3V (V + 2)

(
1

2
− γE − ln

r

2

)
. (42)

The first term is from the negative mode, the second from the zero mode(s) (using (38)),
the third term from the numerical computation of the higher modes and the last term is
the renormalization counterterm contribution. Expression (42) can be applied to any field
potential U(�), without relying on the thin-wall limit. A comparison with the analytic thin-
wall computation of Konoplich and Rubin [42] is plotted in figure 1, and shows excellent
agreement. This approach can also be extended to false vacuum decay in curved space, where
the structure of the bounce solutions [43] and the corresponding fluctuation equations [44] is
much richer.

8. Application 2: determinant for massive quarks in instanton background

The fermion determinant in an instanton background is known in the massless (chiral) limit
[9] and in the heavy quark limit [45]. Here we compute it for any m [46]. The relevant part of
the renormalized effective action, �̃S

ren(m), behaves as

�̃S
ren(m) =

⎧⎪⎨
⎪⎩

α(1/2) +
1

2
(ln m + γ − ln 2)m2 + · · · , m → 0

− ln m

6
− 1

75m2
− 17

735m4
+

232

2835m6
− 7916

148225m8
+ · · · , m → ∞

(43)

where α(1/2) =
 0.145 873. The small mass expansion [9] is based on the known massless
propagators in an instanton background, while the large mass expansion [45] follows most
easily from the Schwinger–DeWitt or heat kernel expansion.
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Figure 1. Comparison as α → 1 of the exact numerical result (dots and solid blue line) from (42)
with the analytic thin-wall limit result 9

32 [1 − 2π

9
√

3
] ≈ 0.167 88 . . . of [42].

(This figure is in colour only in the electronic version)

Since the instanton is self-dual, we can simplify things slightly and work with the scalar
Klein–Gordon operator. For a single su(2) instanton, the spectral problem separates into
partial waves [9], with radial Schrödinger-like operators (take isospin 1

2 )

H(l,j) ≡
[
− ∂2

∂r2
− 3

r

∂

∂r
+

4l(l + 1)

r2
+

4(j − l)(j + l + 1)

r2 + 1
− 3

(r2 + 1)2

]
. (44)

Here l = 0, 1
2 , 1, 3

2 , · · ·, and j = ∣∣l ± 1
2

∣∣, and there is a degeneracy factor of (2l + 1)(2j + 1).
Since the ‘potential’ involves l and j , we cannot directly use the result (29). In order to
compare with ’t Hooft’s massless quark analysis [9], we use a Pauli–Villars regulator �, and
define the renomalized effective action by charge renormalization. To extract the renormalized
effective action we need to consider the � → ∞ limit in conjunction with the infinite sum
over l. Split the partial wave sum into two parts:

�S
�(m) =

L∑
l=0, 1

2 ,...

�S
�,(l)(m) +

∞∑
l=L+ 1

2

�S
�,(l)(m) (45)

where L is a large but finite integer. The first sum involves low partial wave modes, and the
second sum involves the high partial wave modes. For the low partial wave modes, we can
remove the regulator and evaluate the (finite) sum using the (numerical) Gel’fand–Yaglom
result (23). But this sum diverges quadratically with L. In the second sum in (45) we cannot
take the large L and large � limits blindly, as each leads to a divergence. Radial WKB is a
good approximation for the high l modes. With WKB we can compute analytically the large
� and large L divergences of the second sum in (45), using the WKB approximation for the
corresponding determinants [46]:

∞∑
l=L+ 1

2

�S
�,(l)(A;m) ∼ 1

6
ln � + 2L2 + 4L −

(
1

6
+

m2

2

)
ln L

+

[
127

72
− 1

3
ln 2 +

m2

2
− m2 ln 2 +

m2

2
ln m

]
+ O

(
1

L

)
. (46)
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Figure 2. Plot of our numerical results for �̃S
ren(m) from (47), compared with the analytic extreme

small and large mass limits (dashed curves) from (43). The dots denote numerical data points from
(47), and the solid line is a fit through these points.

It is important to identify the physical role of the various terms in (46). The first term is
the expected logarithmic charge renormalization counterterm. The next three terms give
quadratic, linear and logarithmic divergences in L. These divergences cancel exactly against
corresponding divergences in the first sum in (45), which are found numerically.

Combining the numerical results for low partial wave modes with the radial WKB results
for the high partial wave modes the renormalized effective action �̃S

ren(m) is

�̃S
ren(m) = lim

L→∞

⎧⎨
⎩

L∑
l=0, 1

2 ,...

(2l + 1)(2l + 2)P (l) + 2L2 + 4L −
(

1

6
+

m2

2

)
ln L

+

[
127

72
− 1

3
ln 2 +

m2

2
− m2 ln 2 +

m2

2
ln m

]⎫⎬
⎭ . (47)

This is finite for any mass m. Figure 2 shows these results for �̃S
ren(m), compared with the

analytic small and large mass expansions in (43). The agreement is remarkable [46]. It is a
highly nontrivial check on the WKB computation that the correct mass dependence rises to
interpolate between the large mass and small mass regimes. As an interesting analytic check,
formula (47) also provides a simple computation [46] of ’t Hooft’s leading small mass result
α(1/2) = − 17

72 − 1
6 ln 2 + 1

6 − 2ζ ′(−1) = 0.145 873 . . ..

9. Concluding remarks

In this paper I have reviewed some of the reasons for considering determinants of partial
differential operators in quantum field theory. Mathematically, much is known for ordinary
differential operators, especially through the work of Gel’fand–Yaglom [21, 22] and its
extensions [24, 26, 28], but considerably less is known for partial differential operators with
non-trivial potentials. The new mathematical results [30] reported here are the formulae in (29),
which provide simple expressions for the determinant of a radially separable partial differential
operator of the form −�+m2 +V (r). This generalizes the (Dirichlet) Gel’fand–Yaglom result
(11) to higher dimensions. These results lead to many direct applications in quantum field
theory, where they extend the class of solvable fluctuation determinant problems away from
the restrictive class of constant background fields, or one-dimensional background fields, to
the more general class of separable higher dimensional background fields. This includes,
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for example, applications in quantum field theory to the study of quantum fluctuations in the
presence of vortices, monopoles, sphalerons, instantons, domain walls (branes), etc.

A number of further generalizations could be made. First, it is practically important
to include directly the matrix structure that arises from Dirac-like differential operators and
from non-abelian gauge degrees of freedom. This has been done in various ways for certain
applications [47–51], but a simpler unified formalism along the lines of the explicit formulas
(29) is probably possible, as in one dimension [52]. Second, a practical extension to finite
temperature and density would be useful in various physical applications. Third, the biggest
technical challenge is to ask if the restriction of separability can be relaxed. A promising
current approach is the numerical worldline loop method [53]. Without symmetry, computing
functional determinants analytically remains a difficult problem, and any progress will be
interesting.
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